
www.manaraa.com

Software Engineering Research Lab to Airplanes, Orion
and Beyond

One professor’s journey shaped by industry-university collaboration

Suresh C. Kothari
Electrical and Computer Engineering Department, Iowa State University

kothari@iastate.edu http://www.linkedin.com/in/surajkothari

ABSTRACT
This paper is a short story of my adventures of the past
20 years trying to integrate academic research with software
engineering problems in industry. I share the challenges I
encountered on the way, my failures and successes, evolu-
tion of my research, and its adoption in industry. Though
I faced many hardships, I feel great satisfaction in knowing
that my research is applied today in the design of avionics
systems, automobiles, and even in NASA’s Orion program.
My latest adventure and honor is an opportunity to partic-
ipate in two visionary Defense Advanced Research Project
Agency (DARPA) programs aimed at developing an innova-
tive technology to fight the war against sophisticated mal-
ware that poses grave security threats to individuals and
nations. Without working with industry, it would not have
been possible for me to formulate rigorous but practical re-
search problems. These problems have shaped my research.
I narrate my story to provide insights into bridging the gap
between academic research and the problems industry prac-
titioners face. My hope is the reader can benefit from the
story and be able to achieve in 10 years what has taken me
20 years. I also hope that my story encourages industry
practitioners to work with universities.

1. INTRODUCTION
There are at least two major hurdles in bringing together

software engineering researchers and industry practitioners.
First, companies operate under the tremendous pressure of
deadlines and the need for short-term gains. It is difficult
for companies to engage in a partnership involving funda-
mental research that requires a long-term vision. Second,
Software engineering is a nascent discipline and its funda-
mentals have not yet fully emerged, therefore it is especially
hard for industry to distinguish between fashionable versus
fundamental research. These challenges bring with them
big opportunities for pioneering fundamental research, rev-
olutionary technological advances, big economic gains, and
robust software products to benefit society.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SER&IP’16, May 17 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4170-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897022.2897032

As a professor at a US university with a strong empha-
sis on research, I have experienced that being at the in-
tersection of research and application makes it difficult to
meet the publication and other metrics of academic research
excellence. Working with Industry requires an investment
of time and resources in maturing research beyond what
mere publication requires. Nonetheless, I have experienced
that persevering to combine research and application even-
tually leads to relationships and projects that fuel scien-
tific research. Our research on software analysis and trans-
formation, starting with tool-assisted parallelization, led to
an important application for safety-critical control systems
software, which in turn furthered scientific research lead-
ing to DARPA funded projects on detecting sophisticated
malware. This virtuous cycle has led to our research being
applied in the design of avionics systems, automobiles, and
even in NASA’s Orion program.

It is hard for me to imagine that my research and teach-
ing would have evolved the way it has without working with
industry. My interactions with industry have immensely im-
pacted my choice of research problems. Before working with
industry, I gravitated to problems formulated by reading pa-
pers written by other professors like myself. I doubt if practi-
tioners who created, maintained, or managed large software
read our papers. And that did not matter to us, we could go
on publishing papers and get rewarded for them. The key
government agency that funded our research required us to
include a section on the broad impact of our research but we
knew that the proposals’ reviewers judged us primarily by
our publications. Fortunately, I came to the realization that
the kind of research we conducted does not really have the
broad impact we claim in our proposals. I wondered what I
could do differently for my research to have impact beyond
the academic circle of researchers.

It is easy to believe that research is a futuristic endeavor,
and so its impact will come later from unexpected corners.
It happens but rarely. As I kept wondering how to change
my research for it to be used to solve real-world problems,
I got a lucky break. A professor in atmospheric science ap-
proached me because of my expertise in parallel computing.
He wanted my help to parallelize a climate model software.
It was 150 thousand lines of FORTRAN code. As my stu-
dent and I started working on that software, we realized the
need for tools to work with that mountain of code. We built
tools, they kept evolving, and eventually brought us to a
point where we could parallelize the code very efficiently by
using tools to perform the low-level, tedious, and time con-
suming tasks for us. Industry practitioners became inter-

2016 3rd International Workshop on Software Engineering Research and Industrial Practice

 3

www.manaraa.com

ested in our tools to analyze and transform software. They
wanted to work with us to create tools to address their prob-
lems with large software and thus started our university-
industry partnership.

Working with industry has given me valuable exposure
to a large variety of complex problems of large software.
This exposure has fueled the evolution of our software anal-
ysis and transformation tools research. It has revealed ex-
citing opportunities to develop powerful mathematical ab-
stractions to manage complexity of software. Without such
exposure, I doubt that we would have been able to develop
good abstractions applicable to real-world software. The
tools and abstractions evolve in a feedback loop - the tools
enable understanding that leads to good abstractions, and in
turn those abstractions become the foundation for building
even more powerful tools. The university-industry partner-
ship has helped me develop a vision for automated tools
research. I will quote Frederick Brooks [10] to articulate it:

If indeed our objective is to build computer sys-
tems that solve very challenging problems, my
thesis is that IA > AI, that is, that intelligence
amplifying systems can, at any given level of avail-
able systems technology, beat AI systems. That
is, a machine and a mind can beat a mind-imitating
machine working by itself.

Working with industry paved a direct path for my re-
search to have the broad impact that reaches far beyond
the circle of academic researchers. The research of my team
has become valuable to industry. I founded EnSoft [6], a
company to produce software analysis and transformation
tools to manage the complexity of large software. Today,
310 companies in 27 countries, including all major avionics
and auto-mobile companies use EnSoft’s products. Also, 19
academic institutions including 8 universities competing in
the EcoCar Challenge Competition [4] use EnSoft’s SimD-
iff product for model-based development of state-of-the-art
control system software. And, students in 174 institutions in
26 countries have academic licenses of Atlas [8,12,13], a plat-
form to build tools to analyze, understand, transform, and
verify software using mathematical visual models. Lever-
aging Atlas, we were able to propose to Defense Advanced
Research Projects Agency (DARPA) a new approach to de-
tect highly sophisticated, one-of-a-kind, unforeseen malware
that can have catastrophic consequences. This has led to
multi-million dollar DARPA funded projects in collabora-
tion with our research lab and EnSoft.

After narrating my story, I isolate lessons learnt and de-
scribe a model of exchanges between research and industry
that I have found works well. I include my thoughts on the
mega trends in software and its applications that I believe
will shape software engineering research and the need for
industry-university partnerships.

2. UNIVERSITY-INDUSTRY RESEARCH
PARTNERSHIP

One of the key factors which enabled me to bring our
research to bear on industrial applications was the desire
and concerted efforts to shape our software engineering re-
search to address practical needs. It started with an in-
terdisciplinary research project. In 1992-94, our group at
Iowa State University, a group at the Argonne National Lab

(ANL), and a group at the National Center for Atmospheric
Research (NCAR) worked on parallelization of a regional
climate model called MM5. It took more than three years
to parallelize the 150K lines of FORTRAN code for MM5.
It was very tedious and time consuming to go through the
legacy code developed by a large group of atmospheric sci-
entists over a period of twenty odd years. The experience
gave us the insights and motivated us to develop a semi-
automatic, domain-specific tool to facilitate parallelization
of a class of climate model codes. It took about two years
to develop the first version of ParAgent [16].

The ParAgent worked well. A post-doc could parallelize
the MM5 code in two weeks compared to more than three
years it took a team of four programmers to do the same
manually. We then received funding from Environmental
Protection Agency (EPA) and Pacific Northwest National
Laboratory (PNNL) to evolve and apply the ParAgent tool.
Encouraged by the tremendous savings of cost and human
labor realized by using ParAgent, we decided to explore its
use in commercial projects. We found that the companies
would be interested if we could expand the scope of our
research to build new tools to improve efficiency of specific
software engineering tasks of interest to the companies.

Expanding the scope of ParAgent was a difficult task in
an academic setting. It required substantial software devel-
opment. It was difficult to get research funding to support
it. Reviewers denied our proposals because they did not
consider the work to be basic research. Eventually, we got
a break because of a new Iowa State University initiative
aimed at fostering collaborative research with companies. It
provided matching funds to encourage companies to engage
in collaboration with us.

Our first collaboration with industry started with Rock-
well Collins because of this initiative. They were interested
in applying our research to automate the analysis of safety-
critical software to produce the evidence necessary for cer-
tification of their avionics software. The collaboration was
a great experience to gain domain-specific knowledge about
safety-critical software and its development process. An ex-
cellent collaborator at Rockwell Collins helped us under-
stand the applicability of our research to software-enabled
control systems.

Despite this successful partnership, it was hard to break
out of the tensions arising from big differences between aca-
demic and industry criteria for evaluating research. It was
not easy to translate our work into an adequate number of
academic papers to be considered reasonably productive for
my annual faculty review. The funding was quite limited
and not enough to continue the work at a pace to generate
substantial interest for big industry or government funding.
We submitted joint proposals with the company to defense
and aerospace agencies but we did not succeed, probably
because our research was still in early stages. Since our
projects were funded annually, we could not offer multi-year
research assistantships to attract good PhD students. With
new students every year, a significant time was spent on
training them. By the time they gained some proficiency,
it was time for them to complete their Masters degree and
leave. Overall, it looked like a loosing battle.

In 2002, I decided to try a new experiment, an attempt
to foster our research outside of university. I founded En-
Soft [6]. Because of my collaboration with industry, I had
come to know of many practical software engineering prob-

4

www.manaraa.com

lems that we could solve for industry. My idea was to make
money by solving these problems and use the profit to con-
tinue our research in software engineering. Having a com-
pany was also a practical solution to the intellectual property
(IP) issue we had faced. I could influence the IP negotiation
directly without having the university lawyers in the mid-
dle. My undergraduate assistant and a former PhD student
joined the company and that made it easier to continue my
university job along with the company.

Starting a company opened new doors. As a company,
we could get projects from the product groups besides the
R&D wing of Rockwell Collins. An R&D collaborator in-
troduced us to the flight control systems group manager. It
eventually lead to an opportunity to work with a Distin-
guished Engineer at Rockwell on a tough software problem
they had faced while developing the display for the Boeing
787 Dreamliner. We helped them to solve the problem, and
the software we developed actually became a part of the
Boeing 787 Dreamliner cockpit display system.

The manager at Rockwell Collins gave a project to apply
our research to build a prototype tool for the flight control
systems. After the delivery of the prototype, the manger
became interested in having us develop a tool to audit safety-
critical software as a part of the certification process. Three
years after starting the company, it was our first break to be
able to apply our research to build a software tool that would
be actually used to perform a practical task of significant
value to a major avionics company. The tool turned to be
important to the avionics company and it became a qualified
tool that they could use in their certification process.

After developing the tool, we advertised it as a product
on our website. We started getting requests for trials from
a variety of companies. Seven years later, it has turned
out to be a product that is used worldwide by more than
300 companies, including all major avionics and auto-mobile
companies. It turned out that the tool serves an important
need for developing complex control systems software.

There is an important lesson here. We could not have
thought of the need for the tool. It was the flight control
systems group manager who could think of the need because
of his practical experience. On the other hand, it would have
been a real challenge for the manager to develop the tool in-
house; it required a somewhat unique blend of knowledge of
mathematics and software engineering that we had. A part-
nership between research and industry practices was crucial
to come up with a successful product. In addition to the
core algorithm that came from our research, requirements
of usability, software quality, and the ability to gather and
satisfy the corner-cases would have been almost impossible
to meet in a university research group. The fact that we
had a company gave the manager the confidence that these
requirements would be met.

Initially, it was so hard to get companies to take a look
at our research. Interestingly, after trying our product, two
executives from Toyota flew to Ames Iowa to discuss their
need for software tools. It was the time when Toyota was
in news because of the problems with their cars. It was
not clear if the problems originated from software. It was a
lucky break for us. We now have a multi-year engagement
with Toyota to create a tool-chain to ensure high reliability
of safety-critical software in their cars.

In 2005, an opportunity came along to work with 1000+
IBM software engineers in the hypervisor group. Through

a faculty fellowship program offered by IBM, I could spend
a semester working closely with three senior software engi-
neers. These engineers were considered a think tank that
used to be called in to solve complex bugs in the hypervisor
software. I had an opportunity to observe how these ex-
perts reasoned about software with millions of lines of code
to find the defects that lead to strange execution behav-
iors resulting in system crashes on large servers at customer
sites. I observed the clever strategies the experts had devel-
oped. I also noticed that their strategies were intrinsically
limited because of two important factors. First, they did
not have good abstractions as a foundation for their strate-
gies. Second, they only had rudimentary program analysis
tools to mine large software. The two factors were interre-
lated. Without powerful tools to extract the cross-cutting
semantics from large software, it was impossible to build
appropriate abstractions.

The one-semester faculty fellowship program at the IBM
got me thinking about research on Intelligence Amplifying
Mechanization (IAM), a technology to facilitate powerful
strategies to reason about software. The idea was a gener-
alization of the ParAgent research we had done earlier. To
deal with complex software problems, we need a good man-
machine combination to reason about the problem. Human
reasoning is critical to solve the problem and the machine is
needed to amplify the reasoning in order to scale it to large
software.

For the last seven years, we have been working on the
IAM technology. At the university, we have been focused on
developing mathematical formalism to serve as the founda-
tion for the IAM technology. At the company, we developed
a prototype tool so that our research group could perform
experiments to assess and evolve the formalism by apply-
ing it solve complex problems of large software. After six
years of groundwork, we landed a multi-million dollar con-
tract from DARPA to advance Atlas [12] as an IAM plat-
form. We leverage Atlas during the DARPA APAC Project
to build a Security Toolbox to detect highly sophisticated
malware in Android Apps [13]. We are now funded on an-
other multi-million dollar DARPA project that aims to ad-
dress algorithmic complexity and side channel vulnerabili-
ties in software. Both are joint projects between EnSoft and
Iowa State University. The mathematical formalism we have
developed through research at university and a carefully en-
gineered platform at a company have given us a distinct
advantage to compete. Our research has led to unprece-
dented capabilities to detect sophisticated malware. In a
DARPA competition involving 77 Android application chal-
lenges, using the Android Security Toolbox we created, our
team identified the malware in all but 6 apps with no false
positives. DARPA announced our team as the top performer
in this challenge, among contenders that included premier
institutions and top software engineering centers.

3. LATCHING ON MEGA-TRENDS
Based on experiences, I believe that to undertake funda-

mental research and to foster successful partnerships with
companies, it is definitely helpful and maybe even necessary
to latch on to mega-trends. These will be trends that involve
issues where critical societal needs and significant amounts
of money are stake and the issues are so complex that the
solutions will require many decades of research and engineer-
ing work. I will mention trends we have latched on to and

5

www.manaraa.com

which I believe have played as a guidepost for our software
engineering research:

• A dramatic reversal in human to computer cost ratio
- a rough estimate would be a reversal of 500, 000 to 1
from 1960 to today.

• Gigantic and Pervasive Growth of Software - The IBM
360 operating system was envisioned to have a foot-
print of 16K; it eventually turned out to be a 64K
footprint and that was considered “very fat” operating
system - contrast that with a modern operating system
with more than 50M lines of code.

• Extreme Needs for Highly Reliable Software - If a desk-
top crashes, it can be rebooted, not an option if it is
the flight deck computer.

The mega-trends suggest important problems for research.
For example, automated software engineering is an impor-
tant problem as its solution can lower the labor cost. The fo-
cus of automation can be one or more commonly performed
software engineering tasks. In case of the ParAgent tool,
the task to be automated is that of transforming sequential
code to parallel code. Another important topic would be
software analysis to detect malware.

Revolutionary fundamental research is needed to make
quantum jumps in solving the mega-trend problems. Also,
the mega-trend problems are inherently of interest to the
industry and the government. Latching on to mega-trend
problems have helped us in forging partnerships with indus-
try. It has taken us a lot of effort and long time to evolve
fundamental research that can lead to concrete advances in
solving mega-trend problems. However, once on track, the
research has the potential to continue for a long time with
many ground-breaking advances. For us, it has also led to
major DARPA projects, among the largest projects at the
university. The faculty fellowship opportunity at a company
was the critical beginning that six years later resulted in our
success with these DARPA projects.

4. REFLECTING ON UNIVERSITY INDUS-
TRY PARTNERSHIPS

It has taken me twenty years and much hardship to achieve
success by forging university-industry partnership. My story
may not help others in minimizing their hardship, however,
it can help them achieve in ten years what has taken me
twenty years.

I have used a narrative style to catch attention. The in-
sights and lessons learnt may not have been clear enough
through my narrative style. My narrative style also does
not directly address an important issue, a danger many pro-
fessors perceive. There is a belief that working with indus-
try dilutes the quality of underlying basic science. It is not
clear from my narration if our research involved meaningful
scientific advances and insights. This section is aimed at
addressing these points so that the paper can be of better
benefit to the readers.

4.1 How to develop the partnership?
• The first thing is something I did not do, but I real-

ized its importance later. It is important to find good
mentors and seek their help. I think one needs both
types: the academic and the industry mentors. My
criteria for an academic mentor are: (a) the person

has significant experience of serving and prospering in
an academic institution, (b) the person has done re-
search that has had a clearly visible practical impact,
and (c) the person has visibility in industry. My cri-
teria for an industry mentor are: (a) the person has
had a distinguished technical career in industry, and
(b) the person can effectively communicate the tech-
nical challenges from her or his work. Good mentors
can be very helpful to expedite progress. For the last
few years I have been compiling a list of good mentors
to help my graduate students.

• I learned an important lesson early on. I participated
in meetings the university arranged to foster collabora-
tion. Professors presented their research during these
meetings. It was a seemingly good idea to inform in-
dustry about different research projects professors are
working on so that they can choose the research they
like. The idea did not work as well. My takeaway was
that, it should be the other way around. Professor
should first get informed about the problems indus-
try faces as opposed to trying to sell their research to
industry. The industry practitioners get disenchanted
listening to talks from professors who have little knowl-
edge of practical problems.

• Interdisciplinary research helped me to start relation-
ships with industry. It gave me an idea of what it
takes to work on large software written by others. Us-
ing this experience, I developed tools that I could show
to industry as concrete artifacts instead of describing
hypothetically how our research can help to manage
complexity of large software. It is important to con-
vey what the research can do as opposed to describing
it as you would do for publishing a paper.

• Academia and industry evaluate research quite differ-
ently. The novelty of algorithms, the papers, the ci-
tation counts, the publication venues, the best paper
awards are among the top indicators of quality of re-
search for academia. For industry, it is mostly about
how effectively the research addresses their problems
and how much training and other effort it would take
to adopt the research. The two criteria are not mu-
tually exclusive but it does require a lot more effort
to satisfy both. When working with industry, it is im-
portant to keep in mind the contrast between its needs
and priorities and those of an academic setting.

• Developing a long-term partnership with industry is
like growing a big tree, it takes time. A seed germi-
nates and you have to be extra cautious when it is a
seedling, it can get easily trampled on. It takes a long
time for it to grow and become a beautiful tree. It
requires patience and constant nurturing.

The initial years, in my case almost ten years, were very
difficult. While I was working hard on driving research in
a direction that would be amenable to a highly successful
partnership with industry, my research productivity, as mea-
sured by metrics such as the number of papers, suffered and
I faced tough problems and had to forego recognitions that
I could have attained had I continued academic mode of
research. Since I was already a full professor when I mi-
grated to practical software engineering research, I did not
face the danger of losing my job. I had a colleague who en-
gaged himself into a similar activity before he was tenured

6

www.manaraa.com

and eventually failed to get tenure. Fortunately, he started
a company and did become very successful. It is an ardu-
ous journey to undertake research that can lead to highly
successful partnerships with industry.

The numbers game is hurting credibility of academic re-
search. As David Parnas, a highly respected researcher in
software engineering, points out [14] “the computer science
literature is being polluted by more and more papers of less
and less scientific value.” The industry cares about the ben-
efits and uses of research for real-world software problems;
you cannot convince industry to work with you by producing
a long list of papers you have published.

4.2 What are the important benefits of part-
nership?

• Working with industry changed my vision of research.
The exposure to their constraints and challenges helped
me to formulate different types of research problems.
I also got a clear picture of how research can impact
the real-world software. I would consider this the most
important benefit. It is this vision of research that has
helped me to write successful multi-million dollar pro-
posals involving research that impacts both the nation
and the industry.

• Another important benefit for me was the founding
of my own company. The industry partnership has
been crucial for me to understand what commercial
products could be valuable and why.

• The industry partnership benefited my educational ef-
forts. It has enriched my teaching. In essence, I teach
students how to reason about large software. By us-
ing real-world problems I have learnt from industry,
I can engross my students while I teach them how to
think. Without those problems, it would be a super-
ficial exercise. My industry contacts helped me to get
about $350, 000 dollars in cash as the seed funding plus
equipment and software from companies to support the
effort I led to start an undergraduate software engi-
neering degree program.

• Through industry partnership, I got to see the tools in-
dustry uses and I could avoid reinventing the wheel by
replicating what they already had. Understanding the
shortcomings of their tools, helped me to get new vi-
sion of far more sophisticated tools. It was like getting
the vision to build a MRI machine to view internals of
software.

• I received IBM Fellowship for a semester. It also gave
me a chance to closely observe how the distinguished
engineers in IBM solved complex software problems.
This experience led research that culminated in the
Atlas platform [8,12] for building tools, and eventually
led to multi-million dollar research projects.

• I started a company to break the academic barriers
to forge relationships with companies. In retrospect,
that turned out to be a very important decision. It
has enabled me to extend my research and its outreach
to industry on a scale that would be hard to achieve
without the company.

4.3 Does industry partnership mean dilution
of scientific research?

This is a controversial topic. For me, instead of dilu-
tion, the industry partnership has been pivotal to undertake
deep scientific research. Initially it was a lot of engineering
to build tools to analyze and transform large software. It
changed after we built sophisticated tools, and later even a
platform to build tools. As mentioned before, the vision for
building such tools came because of partnership with indus-
try.

With these tools, it has become possible to perform un-
precedented experiments on large software that have re-
vealed fundamentally new ways of analyzing and transform-
ing software. I will elaborate this point with a concrete
example from our research.

4.3.1 A research example
Formal verification of large software has been an illu-

sive target, riddled with problems of low accuracy and high
computational complexity [1, 7, 9, 11, 17]. With growing de-
pendence on software in embedded and cyber-physical sys-
tems where vulnerabilities and malware can lead to disas-
ters, an efficient and accurate verification has become a cru-
cial need. The verification should be rigorous, computa-
tionally efficient, and automated enough to keep the human
effort within reasonable limits, but it does not have to be
completely automated. The automation should actually en-
able and simplify human cross-checking which is especially
important when the stakes are high. Unfortunately, formal
verification methods work mostly as automated black boxes
with very little support for cross-checking.

Avionics companies have to verify that their safety-critical
software works correctly. We worked with an avionics com-
pany to produce tools to support their verification process.
That exposure has evolved into a new vision for verifying
software. It is to integrate automation with human intelli-
gence to solve software verification problems where complete
automation has remained intractable. The key innovation is
a mathematically rigorous notion of verification-critical evi-
dence that the machine abstracts from software to empower
human to reason with. We use visual software models as the
key enablers for verification-critical evidence. The goal is
to create a powerful fusion of automated evidence abstrac-
tion and evidence-based reasoning and verification. The
evidence-based verification is automated wherever possible
and complemented by human reasoning wherever needed. A
side benefit is that the evidence can be shared so that a team
of analysts can perform the verification collectively. We call
the overall approach Evidence-Enabled Collaborative Veri-
fication (EECV).

We have developed the EECV machinery to tackle the
verification problem of Matching Pair Verification (MPV),
specifically to verify the correct pairing of mutex lock and
spin lock with their corresponding unlocks on all execution
paths. We applied our EECV machinery on three recent
versions of the Linux operating system with altogether 37
MLOC and 66, 609 verification instances. Our evaluation re-
sults on these instances in comparison to the state-of-the-art
Linux verification tool shows the effectiveness and scalability
of our approach.

4.3.2 An Overarching Research Vision
Working with industry helped me to develop an overar-

7

www.manaraa.com

ching vision for research. I realized that analyzing large
software is the task central to enhance productivity, safety
and cybersecurity. It is a task too big for humans alone and
too complex for machines to do accurately. The key is to
build human-machine collaboration systems.

With the focus on human-machine collaboration, the key
research questions are:

• What should be the query language for humans to for-
mulate their questions to a machine to obtain informa-
tion that is crucial to understand large software?

• What representation should the machine use to com-
municate knowledge about software to humans?

Understanding large software requires iterative refinement.
The questions evolve as human understanding increases. A
human-machine collaboration system must support interac-
tive collaboration. For example, a human should be able
to follow up with question to ask the machine to refine the
answer to a previous question. In effect, the answer to a
question may need to serve as the input for the next ques-
tion. This can be facilitated if it is a composable query
language and it integrates seamlessly with the knowledge
representation the machine uses.

There are two crucial program comprehension needs: (a)
enable the human to develop the knowledge that can re-
late low-level program artifacts to high-level knowledge in
order to apply domain-specific ideas to solve complex prob-
lems, (b) enable the human to recognize the coding patterns
used by developers to manage complexity of their software.
Without leveraging the domain knowledge and the coding
patterns, one is left to mere generic analysis which becomes
intractable. While it has been intractable to parallelize large
climate model software using generic compiler techniques,
we could create a tool to do so by developing an automated
parallelization technique enabled by the knowledge about a
class of numerical methods. While it has been intractable
to achieve high accuracy for verifying the Linux operating
system software with generic formal verification techniques,
we could create a highly accurate verification technique by
recognizing certain coding patterns used by the Linux de-
velopers and using them to improve the accuracy.

Many real-world problems are intractable to solve with
generic automated analysis or formal verification. The prac-
titioners in industry have valuable knowledge which they
routinely use to work on their complex problems with large
software. The issue is that the application of knowledge
is mostly manual and that incurs tedious efforts, time de-
lays, and human errors. There is an opportunity for sig-
nificant automation and the need for research to make it
a reality. Automated software engineering researchers in
academia have a huge opportunity to work with industry to
develop powerful knowledge-based automated software en-
gineering techniques and tools. Since the domain knowledge
resides with industry practitioners, a partnership with in-
dustry is crucial.

As my research evolved, I have realized that for automated
software engineering to be highly beneficial, it needs to go
far beyond automation techniques and tools. It actually
requires new thinking to solve problems differently. The
way to solve a problem using an automated tool can be very
different from solving it manually.

The real power of automation is the ability to build mod-
els to solve complex problems. An automated tool can en-

able knowledge-based modeling that is impossible to do by
hand because of the humongous size of software. The prac-
titioners in industry are not used to build such models and
without them the benefits of automation can be quite lim-
ited. We need research on developing powerful models to
abstract and solve complex software problem. The think-
ing that goes into developing such models is non-trivial and
must also be dispersed through software engineering cur-
riculum and training courses for industry. While teaching
a course on how to reason about large software using auto-
mated tools, I observe that the students initially use tools to
merely automate some manual steps without changing the
manual problem solving method. After learning modeling
techniques, they change the problem solving method itself
to unleash the tremendous power of automation.

Research on knowledge-based automated software engi-
neering is also critically important for cybersecurity. Espe-
cially concerning to the Department of Defense (DoD) are
the malware attacks that a nation or a terrorist organization
can launch to cause catastrophic events or to steal secrets by
inserting just a few lines of malicious code in mission-critical
software. DARPA has launched big research programs to ad-
vance automated program analysis to address cybersecurity.
I have participated in two such programs: DARPA Auto-
mated Program Analysis for Cybersecurity (APAC) [2] and
DARPA Space/Time Complexity Analysis for Cybersecu-
rity (STAC) Program [3]. These programs focus on sophis-
ticated malware, which is one-of-a-kind and specially crafted
for the target. Detecting it can be like searching for a nee-
dle in haystack without knowing what the needle looks like.
Detecting sophisticated malware in large software is a prob-
lem too big to be solved by humans alone and too complex
for machines to do accurately; it requires a human-machine
collaboration system.

Sophisticated malware is not just a concern for the de-
partment of defense. For example, software in the car can let
hackers send commands through the car’s entertainment sys-
tem to its dashboard functions, steering, brakes, and trans-
mission, all from a laptop that may be across the country.
The automobile companies, in fact all companies that have
internet-enabled mission-critical software in their products,
will need to address sophisticated cybersecurity problems
rooted in software vulnerabilities. It is another opportunity
for industry and academic researchers to work together to
develop new software analysis and verification technologies
for safety and security.

Others may need a different vision to suit their expertise
and research. Nonetheless, it is important to develop a wor-
thy research vision so that the research does not get diluted
and the opportunities for collaboration become clear.

4.4 Science or Engineering?
The fundamental research and applied research are two

different things is a flawed assumption for software engineer-
ing. Application is the opportunity to verify that the funda-
mentals are correct, and they need to feed on each other.
Otherwise one becomes completely untethered from real-
ity. Scientists build things to study something and engineers
study something to build things. Software engineering re-
search should be centered around building something. And,
it should not be building toy systems. The challenges of
software engineering lie in building, evolving, analyzing, and
verifying large software. The fundamental research should

8

www.manaraa.com

focus on these challenges. I believe and I have experienced
that such fundamental research can be and will be of interest
to industry.

One must also ask how much should we emphasize sci-
ence in software engineering research? Many software anal-
ysis problems have exponential complexity. It is important
to look for pragmatic engineering solutions to address these
problems. On a related theme, Professor Kota writes [5]:
“Technological innovation has long been key to American
prosperity, especially when it is applied to cutting-edge man-
ufacturing, and the centerpiece of such innovation is engi-
neering. Investments in scientific research produce indis-
pensable knowledge, but it is by applying that knowledge
through rigorous engineering and practical development that
people and nations produce wealth, thereby achieving eco-
nomic strength, and national security. The United States
has fallen behind in this “translational research.” A core
problem lies in America’s failure to maintain one of its his-
torical core strengths: engineering. Distinct from science,
engineering means not just analysis and discovery but syn-
thesis and innovation aimed at turning abstract ideas into
tangible products.”

Software engineering must emphasize innovation aimed at
turning ideas into tangible software.

4.5 About Academic Environment
The Promotion and Tenure (P&T) criteria promote the

numbers game and not the tangible evidence a professor
can produce to convince industry the utility of his or her
research. Without some changes in P&T process, it is risky
and often not rewarding to spend time on research that is
likely to lead to any major collaboration with industry. A
support system at university is critical to undertake research
that will be valued by industry. In my case, the industry
partnership initiative at Iowa State University was critical
in the beginning stage.

Some of my experiences are peculiar to the US setting. Re-
search and teaching expectations for promotion and tenure,
the support from university to promote partnership with in-
dustry, the ties university has with industry, whether the
university is situated in a hub of companies with need for
software professionals are factors that significantly impact
the dynamics of creating university-industry partnerships.

5. CONCLUSION
While I write about my journey and my research, I have

not done it alone. The research has involved an enormous
amount of software development. I have been very fortu-
nate to have a great team of graduate and undergraduate
students, post-docs, technical staff, and my colleagues and
highly talented engineers at EnSoft to enable our research.

I quote Parnas on software engineering, academia, and
industry. Parnas comments [15]:

Industry is aware of the need for improvement
and sporadically forms new groups and initia-
tives that attempt to bring about change in what
practitioners do. Most mainstream academics
do not get involved. On the academic side, we
see new notations, formalisms, proof methods,
and design approaches. These gain little traction
with industry because they do not appear to ad-
dress the practitioner’s problems. Rather than

show a better, more efficient way to do things,
they call for additional work that has no obvious
benefit.

The industry and the open source community produce
the software. The litmus test of good software engineering
research should be the value it provides to producers of soft-
ware. If the research papers are not important to them, if
they do not apply the research, how do we justify the value
of that research?

6. ACKNOWLEDGMENTS
I am greatly indebted to my colleagues at EnSoft and

my research team at Iowa State University for their help.
This material is based on research sponsored by DARPA
under agreement numbers FA8750-12-2-0126 and FA8750-
15-2-0080. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

7. REFERENCES
[1] Bill Gates Keynote: Microsoft Tech-Ed 2008. http://news.

microsoft.com/speeches/bill-gates-keynote-microsoft-tech\
%E2\%80\%A2ed-2008-developers/.

[2] Darpa automated program analysis for cybersecurity.
https://www.fbo.gov/spg/ODA/DARPA/CMO/
DARPA-BAA-11-63/listing.html. Accessed: Jan. 2016.

[3] Darpa space/time analysis for cybersecurity.
https://www.fbo.gov/spg/ODA/DARPA/CMO/
DARPA-BAA-14-60/listing.html. Accessed: Jan. 2016.

[4] Ecocar 3: An advanced vehicle technology competition.
http://ecocar3.org/vthevt/team-sponsors/.

[5] Engineering 2.0: Rekindling american ingenuity.
http://www.huffingtonpost.com/sridhar-kota/
engineering-20-rekindling\ b\ 4844449.html.

[6] Ensoft corp. http://www.ensoftcorp.com.

[7] Formal verification in large-scaled software: Worth to ponder.
https://blog.inf.ed.ac.uk/sapm/2014/02/20/
formal-verification-in-large-scaled-software-worth-to-ponder/.

[8] [video] atlas: a new way to explore software, build analysis
tools. https://www.youtube.com/watch?v=cZOWlJ-IO0k.

[9] Dirk Beyer and Alexander K Petrenko. Linux driver
verification. In Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies,
pages 1–6. Springer, 2012.

[10] Frederick P. Brooks, Jr. The computer scientist as toolsmith ii.
Commun. ACM, 39(3):61–68, March 1996.

[11] Carlos Canal and Akram Idani. Software Engineering and
Formal Methods: SEFM 2014 Collocated Workshops: HOFM,
SAFOME, OpenCert, MoKMaSD, WS-FMDS, Grenoble,
France, September 1-2, 2014, Revised Selected Papers, volume
8938. Springer, 2015.

[12] Tom Deering, Suresh Kothari, Jeremias Sauceda, and Jon
Mathews. Atlas: a new way to explore software, build analysis
tools. In Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014.

[13] Benjamin Holland, Tom Deering, Suresh Kothari, Jon
Mathews, and Nikhil Ranade. Security toolbox for detecting
novel and sophisticated android malware. In Proceedings of the
37th International Conference on Software Engineering.
IEEE Press, 2015.

[14] David Lorge Parnas. Stop the numbers game. Commun. ACM,
50(11):19–21, November 2007.

[15] David Lorge Parnas. Software engineering - missing in action:
A personal perspective. IEEE Computer, 44(10):54–58, 2011.

[16] S.C. Kothari. Automatic parallelization, aspect-oriented
programming, and beyond. In Keynote Address,
High-Performance Computing Asia Conference, Bangalore,
India, 2002.

[17] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald. Formal methods: Practice and experience. ACM
Computing Surveys (CSUR), 41(4):19, 2009.

9

